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Abstract 
This paper discusses various methods of 

improving the detection capability of horizontal and 
vertical failure modes for a terrain database 
integrity monitor that is purely based on the inputs 
from downward looking sensors. Terrain database 
integrity monitors which use radar altimeter and 
GPS inputs have previously been proposed for 
Synthetic Vision Systems (SVS). An SVS provides 
pilots with either a Heads Down Display (HDD) or 
a Heads Up Display (HUD) containing aircraft 
state, guidance and navigation information, and a 
virtual depiction of the terrain as viewed “from the 
cockpit”. The source used to generate the terrain 
depicted on these displays is a Digital Elevation 
Model (DEM). Due to the compelling nature of the 
displays, it is quite possible for the pilots to use the 
display for functions other than its original intended 
function. It may be hard to avoid such a scenario, 
especially if the system is certified as an advisory 
system. When using SVS display technology for 
functions other than advisory it may be necessary to 
include a DEM integrity monitor whose 
performance is specified by probabilities of Missed 
Detection, Fault–Free Detection and Time-to- 
Alarm. Ideally, the DEM represents the height or 
elevation of the terrain at corresponding coordinates 
(e.g. latitude and longitude) expressed in a 
predefined vertical datum. However, the given 
elevations deviate from the true elevations due to 
systematic and blunder errors that are present in the 
DEM primarily due to the way in which they are 
generated from different sensor technologies such 
as photogrammetry, remote sensing, etc. and the 
manual post-processing process. Another source of 
error of lesser significance is the flat earth 
approximation over relatively larger areas, while 
collecting the data. The described integrity monitor 
method is based on the comparison of the DEM 
terrain profile with an independent terrain profile 
synthesized from a downward looking sensor 
(Radar Altimeter) and GPS-Wide Area 

Augmentation System (WAAS) measurements. Due 
to the inherent presence of sensor measurement 
noise and random errors in the DEM, it is not 
possible to detect vertical biases and horizontal 
translations in the DEMs in an absolute sense, but 
only in a statistical manner. When considering the 
probability of missed detection, a region of 
uncertainty can be defined as the geo-spatial region 
that contains the set of all possible aircraft positions 
surrounding the true position which do not result in 
an integrity alarm, given the presence of a DEM 
failure.  The integrity monitor’s capability to detect 
horizontal failure modes is directly related to the 
extent of the uncertainty or missed detection region; 
the smaller the region, the better the integrity 
monitor is capable of detecting a horizontal failure.  
A method is proposed to detect horizontal failures, 
which monitors the Kalman filter’s covariance 
matrix over the region of uncertainty. A similar 
concept as that used for integrity monitoring has 
been explored for its potential applications in 
terrain navigation. Flight test data from NASA’s 
flight trials at Eagle/Vail (EGE), Colorado and Ohio 
University’s flight trials in Juneau (JNU), Alaska is 
used to evaluate the performance of the proposed 
methods. 

Introduction 
Take-off and landing are difficult phases of a 

flight but in addition another very difficult situation 
faced by pilots is when they cannot see anything of 
the environment outside of the cockpit. These zero 
visibility situations can occur due to bad weather 
conditions like clouds, rain, fog, snow or darkness 
that reduce the number of visual cues and 
potentially result in loss of spatial orientation. 
Continuing on a safe flight and landing the aircraft 
while experiencing spatial disorientation can 
become extremely tricky. Even though most 
aircrafts are equipped with instruments to aid the 
pilot during flight in Instrument Meteorological 



Conditions (IMC), statistics disclosed by a Flight 
Safety Foundation revealed that 41% of all aircraft 
accidents occurred when the pilot flew into terrain 
while in full control of the aircraft and crashed the 
aircraft while traversing particularly rough terrain 
like hills and mountains. This is referred to as 
Controlled Flight Into Terrain (CFIT). [1] 

NASA’s Aviation Safety Program investigated 
Synthetic Vision Systems (SVS) and one of the 
SVS goals is the mitigation of accidents due to 
CFIT by providing the pilots with advanced display 
technology containing information about aircraft 
state, guidance, navigation, surrounding terrain and 
traffic. The source of the terrain information for the 
SVS display is a DEM, a digital look-up table of the 
terrain heights corresponding to a set of position, 
coordinates (latitude, longitude). Examples of 
DEMs are Digital Terrain Elevation Database 
(DTED) levels 0, 1, and 2 and Jeppesen terrain 
databases. In order to be certified for a level of 
reliability further than advisory, all or a subset of 
the SVS subsystems must meet or exceed the 
required reliability ratings. This includes the DEM 
that could otherwise provide Hazardously 
Misleading Information (HMI) about the terrain to 
the pilots. To ensure that a DEM conforms to a 
given probability of fault-free detection (false 
alarm) and of missed detection, it becomes 
necessary to monitor the consistency of the terrain 
heights stored in the DEM with that of the real 
world. 

Terrain Database Integrity Monitor 
Terrain databases may have systematic faults 

and errors in the form of: 

• Bias, due to coordinate transformation 
mismatch in the vertical and horizontal 
domains. 

• Ramps in the vertical and horizontal 
domains. 

• Random distributed errors in the vertical 
domain and circularly distributed random 
errors in the horizontal domain. 

 

This paper concentrates on the bias errors in 
both the vertical and horizontal directions. The 
performance of the integrity monitor depends upon 
its capability to detect vertical biases and horizontal 

translations with a certain probability. The smaller 
the biases it can detect, the better the integrity 
monitor performs. 

Vertical Direction Integrity Monitor 
The integrity monitor scheme in the vertical 

direction has previously been described in [2], [3] 
and is based on a comparison of the DEM terrain 
profile with an independent terrain profile 
synthesized from downward looking external 
sensors in real time. The present scheme uses a 
Radar Altimeter (RA), Global Positioning System 
(GPS) and augmentation information from WAAS. 
The synthesized height measurements are formed as 

( ) ( ) ( ) ariRAiDGPSisynt lththth −−=   (1) 

Where  is the height above Mean Sea 
Level (MSL) as derived from DGPS measurements,  

DGPSh

RAh  is the height Above Ground Level (AGL) 
obtained from RA measurements and l  is the 
distance offset between the GPS and the RA 
antennas, typically the distance between the roof 
and the belly of the aircraft. All measurements are 
referenced to time . 
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The metrics used to express the consistency or 
degree of agreement between the terrain database 
profile (henceforth called DTED profile) and the 
synthesized terrain profile are: 

• Absolute Disparity (AD): 
)()()( iDTEDisynti ththtp −=   (2) 

The absolute disparities are sensitive to 
bias errors. The Mean Squared Error 
(MSE) of the absolute disparities is given 

by ∑
=

N

i
itp

N 1

2 )(1
 where N is the number 

of measurements. 
• Successive Disparity: 

)()()( 1−−= iii tptpts    (3) 
The successive disparities are formed by 
subtracting two consecutive absolute 
disparities, getting rid of constant biases 
in the sensor measurements. Successive 
disparities are sensitive to ramp errors. 



• Cross Correlation: Magnitude as a 
measure of agreement between the 
DTED and synthesized terrain profiles. 

 
This paper discusses the usefulness of the 

Absolute Disparity metric for consistency between 
the two terrain profiles. As described in [2], if an 
aircraft is flying at a height of at least 290 meters 
and a speed of no less than 60 meters/second, the 
absolute disparities obtained by subtracting the 
DTED (3” x 3” resolution) terrain profile from the 
synthesized terrain profile have independent 
gaussian noise characteristics with mean zero 
(assuming no biases) and a standard deviation of 
18.9 meters. 

Formulation and Testing of Hypothesis 
The chi-square distribution plays a vital role in 

statistical inference and hypotheses testing. The chi-
square distribution is an important special case of 
the gamma distribution: 
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with 
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να =  and 2=β , the parameter ν called the 

‘degrees of freedom’ [4]. 
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is a random variable having the chi-square 
distribution with N=ν degrees of freedom. If the 
sample mean X  is unknown, then 
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is a random variable having the chi-square 
distribution with 1−= Nν  degrees of freedom. 
Since the absolute disparities are assumed to be 

normally distributed, their squares are chi-

square distributed and a test statistic concerning  
shall be formulated later in this section. 
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The basic steps to be followed for any 
hypotheses testing are reproduced here from [4]. 

1. Formulate a Null Hypothesis (H0) and an 
appropriate Alternate Hypothesis (H1) that is 
accepted when the Null Hypothesis must be 
rejected. 

2. Specify the probability of a Type I error for H0; 
if necessary, also specify the probability of a 
Type II error for H1. 

3. Based on the sampling distribution of an 
appropriate statistic, construct a criterion for 
testing the null hypothesis against the given 
alternative hypothesis. 

4. Calculate from the data, the value of the 
statistic on which the decision is to be based. 

5. Decide whether to reject the null hypothesis, 
accept it or to reserve judgment. 

Rejection of hypothesis H0 when it is true is 
referred to as either a Type I error or a fault-free 
detection or false alarm. Acceptance of hypothesis 
H0 when it is false is referred to as Type II error or 
a missed detection. 

Table 1.  Decision Making in Hypothesis Testing 

 Accept H0 Reject H0 
H0 is true Correct 

Decision 
Type I error 
(Fault-free 
Detection) 

H0 is false Type II error 
(Missed 
Detection) 

Correct 
Decision 

 

The metrics used to perform hypothesis testing 
are random variables with a probability distribution 
due to the inherent presence of measurement noise 
on the sensors (RA, GPS positions), vertical and 
horizontal error probability specification of the 
DEM, random errors on the DEM and ground cover 
(vegetation). Thus, the integrity metrics must be 
characterized statistically. 

Under the fault-free condition (no bias), the 
over-bound of the probability density of the errors 



on the sensors and the DEM yields a normal 
probability density function (PDF), which leads to 
the following null hypothesis or fault-free 
hypothesis: 
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where ( )2,0 pN σ  is a normal distribution with mean 

zero and variance . The variance  is derived 
from the convolved variances of the individual 
sensor error PDFs, errors due to ground cover and 
the specified error characteristics of the DEM [2]. 
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When a failure mode exists in the form of a 

bias on either the sensors or the DEM or both, the 
bias shows up in the PDF of the absolute disparities 
as the mean, giving rise to the alternate or faulted 
hypothesis: 
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Figure 1. Distribution of T for H0 and H1 
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square distribution tables or calculated from 
equation (4). Figure 2. shows a look-up plot for the 
threshold values for various degrees of freedom and 
various PFFD, the values having been generated 
using [6]. ( )2

11 ,~: pNp σµΗ      (7) 

where µ  is the failure bias.  [3] furthermore 
defines a minimum detectable bias, Bµ  as the 
smallest bias that can be detected with a probability 
of 1- PMD. 
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Forming the chi-square statistic as in equation 
(5) by scaling the sum of squares of the ADs by the 
variance of the noise on the ADs under nominal 
conditions gives rise to the Test Statistic, T: 
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Under H0, T is chi-square distributed with N 
degrees of freedom and under H1, T is non-central 
chi-square distributed with N degrees of freedom 
and non-centrality parameter λ [5]. Figure 1 shows 
a representation of the distributions of the test 
statistic, T, under H0 and H1 hypotheses [3]. 

Figure 2. Threshold value for chi-square statistic 

For PFFD = 10-4 and N = 50, the test statistic 
threshold (TD) was found to be 96. A look-up graph 
to find the value of the non-centrality parameter λ, 
given a PMD and the threshold value of the test 
statistic is given in Figure 3, the values having been 
generated using [6]. 

For the purpose of this paper, the probability of 
fault-free detection (PFFD, Type I error) is taken as 
10-4 and the probability of missed detection (PMD, 
Type II error) is specified as 10-7. For PMD = 10-7, TD = 96 and N = 50, λ is found 

to be 164.17. Assuming a constant minimum 
detectable bias Bµ  on the disparities, the non-
centrality parameter λ is related to the bias error [5] 

For the given PFFD and N = 50 successive 
measurements (degrees of freedom is equal to the 
number of measurements), the threshold value of 
the chi-square statistic ‘T’, on which the decision 
has to be based can be looked up from the chi- 2

2 B
p

N µ
σ

λ =                  (9) 



20 40 60 80 96 120 140 160 180

50

100

150
164.17

200

250

300

Chi-Square Statistic Threshold→

No
n-

Ce
nt

ra
lit

y 
Pa

ra
m

et
er

 ( 
λ 

) →

PMD=10-6

PMD=10-7

PMD=10-8

PMD=10-9

 

Figure 3. Non-Centrality parameter look-up plot 

Using equation (9) and , the 
variance of the total noise on the absolute 
disparities as calculated in [2], 

( 22 9.18=pσ

B

)

µ  is found to be 
equal to 34.2 meters, i.e. H0 is rejected with a 
probability of 1-PMD if a bias of 34.2 meters or more 
exists. This is shown to be true by a Monte Carlo 
analysis in the next section. 

Error Analysis 
A Monte Carlo analysis with 10000 

simulations was performed using MATLAB, 
generating normally distributed pseudo-random 
numbers with mean varying from 0 to 50 m and 

mP 9.18=σ . The T value was calculated for each 
run and compared to threshold, TD.  The results are 
shown in Figure 4 as the probability of accepting H0 
under the presence of a bias, µ. 
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The OC curve shows the probability of 
accepting the null hypothesis under the presence of 
a bias fault.  This probability decreases as the bias 
increases and at a bias of 34.2m and above, the null 

hypothesis is accepted only with a probability of 
less than 10-7. 

Flight Test Results 
 Ideally, ( )itp  equals zero but due to noise on 

the DEM and sensors, the variance of ( )itp  is 
(18.9)2.  In case of the presence of biases on the 
sensors and DEM, the absolute disparities are given 
by 

DEMsensorsDEMsensors biasnoisep ++ +=  

Since we are looking for regions of zero bias, 
we model the AD as being zero mean gaussian with 

( )22 9.18=σ . Therefore, 
( )2
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Figure 5 shows the computed values of the T 
statistic for various approaches to runway 25 during 
NASA’s flight tests at Eagle county (EGE), CO 
using their Boeing 757 ARIES test aircraft in 2001. 
The first plot is for zero bias and the next two are 
for deliberately introduced biases of 25m and 35m 
respectively. 
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Figure 4. Operating Characteristics (OC) Curve 

Figure 5. T value during approach to R/W 25 at 
EGE for biases of 0m, 25m and 35m. 

The plots show clearly that for a bias of 25 
meters (less than MDB), only a few points exceed 
the threshold of 96, whereas for a bias of 35 meters, 
most of the points exceed the threshold of 96, thus 
forcing us to reject the null hypothesis H0 and 
provide the pilots with an aural or visual alert. 



Horizontal Direction Integrity Monitor 
So far, the terrain database integrity monitor 

focused on the detection of faults in the vertical 
direction. One horizontal direction integrity monitor 
concept was introduced in [3] referred to as the 
Multiple Path Downward Looking Integrity 
Monitor (MPDLIM). The concept is based on 
computing the T statistic for multiple flight paths 
parallel to the nominal flight path (given by GPS 
positions) over a rectangular search grid. The T 
value at each point over the grid gives a measure of 
similarity between the DEM terrain profiles within 
the search area and the synthesized terrain profile. 
In essence, the vertical direction integrity monitor 
has been extended so that multiple terrain profiles 
from the DEM would be compared to a single 
synthesized terrain profile, and all the grid points 
that do not exceed the chi-square distribution 
threshold are probable aircraft positions. The region 
formed by all such points is referred to as the 
‘region of missed detection’. 

The expression for the test statistic T, can 
symbolically be written as: 
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It should be mentioned that the performance of 
such a horizontal direction integrity monitor is a 
function of the terrain signature (roughness and 
non-periodicity). The performance relies greatly on 
the deviation of the DEM terrain profile from the 
synthesized profile over the different points in the 
search grid. For terrain with a large spatial 
similarity such as flat or periodic terrain, the 
computed T values are similar over the entire search 
grid, resulting in a decreased MPDLIM 
performance.  However, while traversing such 
terrain, the CFIT risk is in general much smaller. 
Rough, quick-varying and non-periodic terrain 
offers improved performance of the horizontal 
integrity monitor as well as increased risk of CFIT. 
A measure of the terrain roughness can be obtained 

from the average size of the terrain gradient, called 
the information content of the terrain [7]: 
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Terrain elevation plots and regions of missed 
detection are shown in Figure 6 for an approach to 
runway 25 at EGE (6a) and at JNU (6d) 
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Figure 6. Region of Missed Detection within –20 
to 20 resolution grid in latitude and longitude. 

The dark areas in figures 6b and 6c represent 
the regions of missed detection. The difference in 
the horizontal translation detection capability at 



EGE and JNU can directly be related to the terrain 
signature at both the locations (given by equation 
(11)). Flying through the Gastinuea channel near 
JNU shows a poor along-track detection 
performance due to the lack of terrain undulations 
along the aircraft’s track.  However, the cross-track 
detection performance is better due to the presence 
of mountains on either side of the channel. Note 
that the along-track CFIT risk is also much smaller 
than the cross-track CFIT risk.  The high terrain 
information content at EGE, on the other hand, 
provides a smaller region of missed detection.  

where: 
−∧

0x is zero as per the assumed system model, 

−
0P  is (19.83)2 assuming one σ (68%) prediction 

error variance, 

kφ  is the state transition matrix; unity, 

kz  is the measurement at time t ; absolute 
disparities, 

k

kH  is the domain transition matrix; unity, 

Improved Detection Using Kalman Filter 
kP  is the estimation error variance at time , kt

A Kalman filter could be used on the absolute 
disparities to reduce the nominal noise (sensors + 
DEM) and estimate a potential bias error (sensors + 
DEM). If the errors are Gaussian, the Kalman filter 
is an optimal estimator of the bias error in the 
Minimum Mean Squared Error (MMSE) sense. The 
system model is given by a bias plus noise or 

nz += µ  where n is zero mean gaussian noise 
with a standard deviation of 18.9 meters. The 
Kalman filter equations are reproduced from [8], 
and an explanation of the matrix terms given. 

kR  is the measurement error variance; the variance 
on the absolute disparities (18.9)2, constant, 

kQ  is the system noise variance or also called the 
tuning parameter of the filter (also a constant). 

Based on this tuning parameter Q, the variance 
of the estimates, P, attains a constant steady-state 
value over time. If the aircraft were to be flown so 
as to cover the entire area of the DEM, and the filter 
is let to run for all the absolute disparities, P would 
be the variance of the complete population of 
filtered estimates over the area of the DEM. Thus 
the T-value using the filtered estimates can be 
computed as: 

1. Specify initial prediction and its error 

variance . 
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Figure 7. P and Q as a function of µB.  



Now, an interesting deduction stems from the 
above argument that Q can be varied such that P 
settles at a certain steady-state value and 
substituting  by P in equation (9), the MDB µ2

Pσ B 
for the Kalman filtered case can be computed. Or, 
working backwards, for a desired value of µB, the 
variance of estimates P and hence the tuning 
parameter Q can be calculated. Figure 7 shows a 
plot of both P and Q as a function of µB. 
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The Cramer-Rao lower bound on the variance 
of the estimates is the variance of the ordinary least 
squares filter, i.e.  and a lower 
bound on µ

14.7N/2
P =σ

B is found to be equal to 4.84 meters by 
substituting the Cramer-Rao lower bound on the 
variance into equation (9).  

Figure 8. Autocorrelation sequence of Kalman 
estimates for µB of 34.2m, 25m and 15m. 

However, filtering of the absolute disparities 
violates the basic assumption of equations (5) and 
(8) that the underlying random variables, xi, are 
independent; equations (5) and (8) are only valid for 
independent samples taken from a normal 
distribution. The filtered estimates are no longer 
independent but are highly correlated and equation 
(12) no longer applies in a strict sense. The amount 
of correlation of the estimates, in time, depends 
upon the tuning parameter of the filter, Q. It turns 
out that for relatively larger values Q (and thus µB), 
equation (12) can still be used to a certain extent 
without much damage done to the pre-specified 
PFFD and PMD as shown in the next section. 0 5 10 15 20 25 30 35 40 45 50
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Error Analysis Revisited Figure 9. Correlation Coefficient (ρ) of Kalman 

estimates for µB of 34.2m, 25m and 15m. 
A Monte Carlo analysis with 10000 

simulations was performed and the autocorrelation 
functions of unfiltered gaussian noise, Kalman filter 
estimates for minimum detectable bias of 25 meters 
and 15 meters have been plotted. Figure 8 shows 
that decreasing the minimum detectable bias and 
hence the tuning parameter Q results in an increase 
of the sample correlation time. The same notion is 
conveyed by the correlation coefficients as a 
function of time difference between samples in 
figure 9. 

In the former case, to obtain independent 
samples, one must pick the estimates every 5 
seconds. This would reduce the degrees of freedom 
in equation (5) by a factor of 5.  Maintaining the 
same amount of degrees of freedom could be 
achieved by increasing the number of original 
samples.  However, this would increase the time-to-
alert by a factor of 5 also. 

Considering these arguments, one must look 
for an acceptable amount of deviation from strict 
theory. The operating characteristics curves for the 
three cases discussed are shown in figure 10. Even 
though the filter is set up for a µB of 15 meters, 
there is still a probability of accepting the null 
hypothesis. This probability, from figure 10 is quite  

The de-correlation time of the Kalman 
estimates for µB of 25 meters is about 5 seconds 
whereas for µB of 15 meters is much longer. 
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An improvement in the horizontal detection 
capability of the integrity monitor is shown in 
figure 13. The smaller the region of missed 
detection, the better the performance of the integrity 
monitor. 

Figure 10. OC Curve of Kalman estimates for µB 
of 34.2m, 25m and 15m. 

large compared to the PFFD and PMD. The OC curve 
for µB of 25 meters looks encouraging, with the 
probability of accepting H0 becoming very small. 

 
Flight Test Results With Kalman Filtering 
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Figure 11. T statistic during approach to R/W 25 
at EGE for biases of 0m, 25m and 35m. 

Figure 11 shows the T-values for a Kalman 
filter aided vertical direction integrity monitor. 
Comparison with Figure 5 shows an improved 
detection capability for higher biases. In order to 
allow the filter to settle down to steady state, 
henceforth, 60 seconds of absolute disparities are 
run through the Kalman filter and the last 50 
seconds of estimates used to compute the T statistic. 
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Figure 13. Region of missed detection during 
approach to R/W 25 at EGE 
In figure 13, the ‘+’ sign gives the GPS 
position considered to be the truth and the dark 
areas are probable aircraft positions (according to 
the DEM) that fail to generate an integrity alarm. 

Figures 14a, b show the areas of missed 
detection computed over the entire flight path 
superimposed upon the terrain features and true 
GPS positions. Figure 14b shows a reduction in the 
region of missed detection over 14a. The dark areas 
in the figures are valleys that have smaller terrain 
information content and thus a larger area of missed 
detection than the rocky mountainous regions. 
There are also a few seconds during the flight when 
the filtered case does not have any area of missed 
detection i.e. the T value exceeds the threshold at all 
locations within the search grid for these time 
epochs. This happens just after the aircraft turns and 
can be attributed to a deviation of the radar 
altimeter measurement from it’s nominal 
performance; the radar altimeters measure the slant 
height instead of the ‘plumb-bob’ height and the  
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Region of Missed Detection (Kalman Filtered)
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Figure 14a,b. Region of missed detection during 
entire flight path at EGE 

Kalman filter’s characteristic of storing past history 
makes the effect of bad data points conspicuous 
after a few seconds. 

Having discussed both vertical and horizontal 
direction terrain database integrity monitors, it is 
possible to combine the two in order to form a 
spatial failure mode detector/integrity monitor. The 
idea is to introduce vertical biases and use the 
horizontal integrity monitor concept at each vertical 
bias to form a volume or ‘space envelope’ of 
missed detection. 

The star ‘*’ in figures 15a and 15b represents 
the GPS aircraft positions and the space envelopes 
have been plotted as contour maps. At first glance, 
the space envelopes seem to be violating the results 
proved earlier on minimum detectable biases, but 
actually, the contours that extend beyond 35m and 
25m in figures 15a and 15b respectively do not 

include the horizontal grid points lying directly 
below the actual GPS positions. 
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Figure 15a. Space Envelope without filtering. 

0
10

20
30

40

0
10

20
30

40
-40

-35

-30

-25

-20

-15

-10

-5

0

Longitude (Grid Points)Latitude (Grid Points)

m
et

er
s

Space Envelope (Kalman Filtered)

 

Figure 15b. Kalman filtered Space Envelope. 

Terrain Navigation 
The T value can also be used for Terrain 

Navigation, also known as Map-aided navigation. 
Since the T value is a measure of the agreement 
between the synthesized terrain profile and the 
DEM terrain profile, a minimum T implies 
maximum agreement between the two terrain 
profiles. The figures 16a and 16b depict the 
minimum T positions computed at every 5-second 
intervals of the flight path for an approach to 
runway 7 at EGE. The trajectory of the minimum T 
positions closely follows the GPS positions except 



in regions just after a sharp turn. This error is 
caused by a systematic error in the radar altimeter 
during large bank angles that causes the synthesized 
height to be not representative of the terrain 
database height [3]. Figures 16a and 16b are quite 
similar to each other, but the filtered case is less 
sensitive to radar altimeter measurement error due 
to the aircraft’s banking maneuver by modeling the 
slant height measurement as a pseudo-bias. 
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Minimum T Position (Unfiltered)
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Figure 17. Detecting horizontal translation in the 
DEM 

Figure 17a, 17b and 17c are the unfiltered, 
Kalman filtered and Least Squares filtered cases 
respectively, the example of ordinary least squared 
filtering provided for comparison. 17d, 17e and 17f 
are the figures corresponding to the previous ones 
with the horizontal bias included. 
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Summary and Conclusions 
Terrain database integrity monitors might be 

necessary for SVS to enable them to meet integrity 
requirements more stringent than advisory. 
Statistical characterization of the vertical direction 
integrity monitor with regard to its minimum 
detectable bias is straightforward, but statistical 
characterization of the horizontal detection 
capability is more challenging. That the vertical 
bias would not exceed the MDB is a great assurance 
but the same cannot be said of the horizontal 
direction. Data from two flight tests at places of 
highly contrasting terrain features, one at 
Eagle/Vail, Colorado in the vicinity of the Rocky 
Mountains, and another at Juneau, Alaska, close to 
icy glaciers was used to study the performance of 
the horizontal direction integrity monitor. The 
results confirm the theoretical understanding that 
the horizontal fault detection capability is 
dependent upon the information content offered by 
the terrain. 

Figure 16a (upper) and 16b (lower). Minimum T 
positions for Terrain Navigation 

A plot of the minimum T positions collapsed 
onto a single grid is shown in figure 17. All 
minimum values cluster around the GPS position 
value (grid co-ordinates of (0,0)) showing no 
horizontal bias. When a 30”x30” bias was 
introduced in the DEM, the cluster of the minimum 
T positions translates accordingly, thus proving the 
capability of detecting horizontal biases and making 
navigation decisions. 

The Kalman filter improves the statistical 
detection capability for terrain database integrity 
monitoring for both vertical biases and horizontal 
translations. As is the case with any filtering 



operation, the Kalman filter alters the statistical 
properties of the system model. An analysis of the 
effects of filtering has been carried out with a 
reliability point of view and the involved tradeoffs 
between strict theory and practical applicability 
have been discussed. 

Applicability of filtering techniques for terrain 
navigation using the test statistic approach has been 
explored. The minimum T-value point on the search 
grid gives the most likely DEM position of the 
aircraft. Position estimates formed using the 
Kalman filtered absolute disparities are much closer 
to the GPS positions during banking phases of flight 
than unfiltered absolute disparities. The positions 
thus obtained could be used for en-route navigation 
with an acceptable horizontal translation error that 
depends upon the terrain signature. More precise 
DEM position estimates require closer spacing of 
the search grid points which in turn requires a 
higher resolution DEM. 

Though the Kalman filtering approach to 
integrity monitoring yields promising results, a 
thorough study of the relation between horizontal 
detection capability and terrain signature is 
recommended. This might involve a higher quality 
DEM and in-depth research to quantify the terrain 
features and relate them to a minimum detectable 
horizontal bias. 
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